Real proven solutions to enable active demand and distributed generation flexible integration, through a fully controllable LOW Voltage and medium voltage distribution grid

Project Motivation

UGRID project focuses on addressing the constraints and needs arisen from poor observability of LV grid, local accumulation of distributed generation, risks and difficulties in managing the distribution network, aging infrastructure and social and environmental restrictions that inhibit the grid development. To be successful, UGRID proposes an open, standardised and integral improvement of the LV grid.

Expected Outcomes and Impacts

- Functional specification of LV dispatching
- Achieve sound LV network representation
- Deployment of mobility tools to support LV field crews
- Integration and processing of meter events in the Outage Management System (OMS)
- Deployment of equipment in secondary substation (SS) and MV feeders to achieve a supplier independent solution for further deployment
- LV grid remote control operation over PRIME infrastructure
- Multiservice PRIME subnetwork
- Combined use of AMI and Home Energy Management Systems for Active Demand Management
- Improvement of consumer capacity building web-based systems
- New steps towards an open market for services (providing information to other agents through IT) DSO as an “enabler”
- Assessment of optimal business models for market participants
- KPI framework definition to evaluate impacts

Project Information

Topic
LCE-07-2014: Distribution grid and retail market

Call
H2020-LCE-2014-3

Funding scheme
IA – Innovation Action

Duration
01/01/2015 – 31/12/2017 (36 months)

Budget
15,7 M€ (11,9 M€ EU grant)

Project Coordinator
Iberdrola Distribución Eléctrica

Partners
19 from 7 European countries (ES, PT, SE, PL, UK, FR, NO)

Demonstration sites
4 Demonstration sites (ES, PT, SE, PL)

WP1 Scope and boundaries of project demonstrations

WP2 Innovative distribution grid applications and functions

WP3 Demonstration in real user environment (Spain)

WP4 Demonstration in real user environment (Portugal)

WP5 Demonstration in real user environment (Sweden)

WP6 Demonstration in real user environment (Poland)

WP7 User engagement, societal research and dissemination of project results

WP8 Monitoring & impact assessment of project demonstrations

WP9 User engagement, societal research and dissemination of project results

WP10 Market & business framework

Partners

- Imperial College London
- Waterfall
- Energa
- Schneider
- Energinet
- InesTec
- Tecologia
- ENEL
- ENEDIS
- ATENDE
- NOS
- Powi
- Schneider
- Energinet
- InesTec
- Tecologia
- ENEL
- ENEDIS
- ATENDE
- NOS
- Powi

Website
upgrid.eu
Technical objectives

- LV state estimation, voltage control: Parameter load DR
- Execution of new technical features using field data
- Improve and automate active and reactive power flows
- Events and alarm integration and processing
- Events and alarm integration and processing

Social objectives

- Increase awareness of LV network
- Enable data manager role
- Technical objectives

- LV state estimation, voltage control: Parameter load DR
- Execution of new technical features using field data
- Improvement and extension of the PFLP (MV/LV) monitoring business case
- Increase non-technical losses and improve observability
- Increase observability and decision support
- Interoperability
- Increase MV and LV network observability
- Increase DER observability

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Technical objectives

- LV state estimation, voltage control: Parameter load DR
- Execution of new technical features using field data
- Improvement and extension of the PFLP (MV/LV) monitoring business case
- Increase non-technical losses and improve observability
- Increase observability and decision support
- Interoperability
- Increase MV and LV network observability
- Increase DER observability

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Technical objectives

- LV state estimation, voltage control: Parameter load DR
- Execution of new technical features using field data
- Improvement and extension of the PFLP (MV/LV) monitoring business case
- Increase non-technical losses and improve observability
- Increase observability and decision support
- Interoperability
- Increase MV and LV network observability
- Increase DER observability

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Expected results and impacts

- Load & generation forecasting, Demand side mgmt., perception and control through a web tool solution
- Empowering consumers by providing information, communications:

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Expected results and impacts

- Load & generation forecasting, Demand side mgmt., perception and control through a web tool solution
- Empowering consumers by providing information, communications:

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Expected results and impacts

- Load & generation forecasting, Demand side mgmt., perception and control through a web tool solution
- Empowering consumers by providing information, communications:

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Expected results and impacts

- Load & generation forecasting, Demand side mgmt., perception and control through a web tool solution
- Empowering consumers by providing information, communications:

Social objectives

- Increase DER observability
- Increase technological awareness
- Increase DER observability

Expected results and impacts

- Load & generation forecasting, Demand side mgm